I ntroduction

Why do we study Theory of Computation

Importance of Theory of

Computation

- Languages
- Languages and Problems

Sequence of mathematical operations ? What are, and are not, mathematical operations?

- Sequence of well-defined operations

How many operations ?

- The fewer, the better.

Which operations?

- The simpler, the better.

What is computable, and what is not ?

- What a computer can and cannot do
- Are you trying to write a non-existing program?

Basis of Algorithm analysis Complexity theory

Can you make your program more efficient?

What is easy, and what is difficult, to compute ?

- What is easy, and what is hard for computers to do?
- Is your cryptographic scheme safe?

Analysis of
algorithms
Complexity
Theory
Cryptography

- Compilers
- Circuit design

1936 Alan Turing invented the Turing machine, and proved that there exists an unsolvable problem.

- 1940's Stored-program computers were built.
- 1943 McCulloch and Pitts invented finite automata.
- 1956 Kleene invented regular expressions and proved the equivalence of regular expression and finite automata.

1956 Chomsky defined Chomsky hierarchy, which organized languages recognized by different automata into hierarchical classes.

1959 Rabin and Scott introduced nondeterministic finite automata and proved its equivalence to (deterministic) finite automata.

- 1950's-1960's More works on languages, grammars, and compilers

1965 Hartmantis and Stearns defined time complexity, and Lewis, Hartmantis and Stearns defined space complexity.

- 1971 Cook showed the first NP-complete problem, the satisfiability problem.
- 1972 Karp Showed many other NPcomplete problems.

1976 Diffie and Helllman defined Modern Cryptography based on NP-complete problems.

1978 Rivest, Shamir and Adelman proposed a public-key encryption scheme, RSA.

An alphabet is a finite, non-empty set of symbols.
$\{0,1\}$ is a binary alphabet.
$\{A, B, \ldots, Z, a, b, \ldots, z\}$ is an English alphabet.

A string over an alphabet Σ is a sequence of any number of symbols from Σ.
$0,1,11,00$, and 01101 are strings over $\{0,1\}$.

- Cat, CAT, and compute are strings over the「n~linh -lnh~hのt

An empty string, denoted by ε, is a string containing no symbol. ε is a string over any alphabet.

The length of a string x, denoted by length (x), is the number of positions of symbols in the string.
Let $\Sigma=\{a, b, \ldots, z\}$
length(automata) $=8$
length(computation) $=11$
length $(\varepsilon)=0$
$x(i)$, denotes the symbol in the $i^{\text {th }}$ position of a string x, for $1 \leq i \leq$ length(x).

Concatenation Substring Reversal

The concatenation of strings x and y, denoted by $x \cdot y$ or $x y$, is a string z such that:
$z(i)=x(i)$ for $1 \leq i \leq \operatorname{length}(x)$
$z(i)=y(i)$ for
length $(x)<i \leq l e n g t h(x)+l e n g t h(y)$
Example
automata \cdot computation $=$ automatacomputation

The concatenation of string x for n times, where $n \geq 0$, is denoted by x^{n}

- $x^{0}=\varepsilon$
- $x^{1}=x$
- $x^{2}=x x$
- $x^{3}=x x x$

Let x and y be strings over an alphabet Σ
The string x is a substring of y if there exist strings w and z over Σ such that $y=w x z$.
ε is a substring of every string.
For every string x, x is a substring of x itself. Example
ε, comput and computation are substrings of computation.

Let x be a string over an alphabet Σ

The reversal of the string x, denoted by x^{r}, is a string such that if x is ε, then x^{r} is ε.

If a is in Σ, y is in Σ^{*} and $x=a y$, then x^{r}
$=y^{r} a$.

$$
\begin{aligned}
& (\text { automata })^{r} \\
= & (\text { utomata } r \\
= & (\text { tomata })^{r} \text { ua } \\
= & (\text { omata })^{r} \text { tua } \\
= & (\text { mata })^{r} \text { otua } \\
= & (\text { ata })^{r} \text { motua } \\
= & (\text { ta })^{r} \text { amotua } \\
= & (\text { a })^{r} \text { tamotua } \\
= & (\varepsilon)^{r} \text { atamotua } \\
= & \text { atamotua }
\end{aligned}
$$

The set of strings created from any number (0 or 1 or ...) of symbols in an alphabet Σ is denoted by Σ^{*}.

That is, $\Sigma^{*}=\cup_{i=}^{\infty}{ }_{0} \Sigma^{i}$
Let $\Sigma=\{0,1\}$.
$\Sigma^{*}=\{\varepsilon, 0,1,00,01,10,11,000,001,010$, 011, ...\}.

The set of strings created from at least one symbol (1 or 2 or ...) in an alphabet Σ is denoted by Σ^{+}.
That is, $\Sigma^{+}=\cup_{i=}^{\infty}{ }_{1} \Sigma^{i}$
$=\cup_{i=0 . . \infty} \Sigma^{i}-\Sigma^{0}$
$=\cup_{i=0 . \infty} \Sigma^{i}-\{\varepsilon\}$
Let $\Sigma=\{0,1\} . \Sigma^{+}=\{0,1,00,01,10,11,000$, 001, 010, 011, ...\}.
Σ^{*} and Σ^{+}are infinite sets.

A language over an alphabet Σ is a

 set of strings over Σ.Let $\Sigma=\{0,1\}$ be the alphabet.
$L_{e}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of l's in ω is even\}.
$\varepsilon, 0,00,11,000,110,101,011,0000,1100$, 1010, 1001, 0110, 0101, 0011, ... are in L_{e}

Complementation Union
 Intersection
 Concatenation
 Reversal

Closure

Let L be a language over an alphabet Σ. The complementation of L, denoted by \bar{L}, is $\Sigma^{*}-L$.

Example:

Let $\Sigma=\{0,1\}$ be the alphabet.
$L_{e}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is even $\}$.
$\bar{L}_{e}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is not even $\}$.
$\bar{L}_{e}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is odd $\}$.

Let L_{1} and L_{2} be languages over an alphabet

 Σ.The union of L_{1} and L_{2}, denoted by $L_{1} \cup L_{2}$, is $\left\{x \mid x\right.$ is in L_{1} or $\left.L_{2}\right\}$.
Example:
$\left\{x \in\{0,1\}^{*} \mid x\right.$ begins with 0$\} \cup\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ begins or ends with 0$\}$

Let L_{l} and L_{2} be languages over an alphabet Σ.
The intersection of L_{1} and L_{2}, denoted by $L_{1} \cap L_{2}$, is $\left\{x \mid x\right.$ is in L_{1} and $\left.L_{2}\right\}$.
Example:

$$
\begin{aligned}
& \left\{x \in\{0,1\}^{*} \mid x \text { begins with } 0\right\} \cap\{ \\
& \left.\quad x \in\{0,1\}^{*} \mid x \text { ends with } 0\right\} \\
& =\left\{x \in\{0,1\}^{*} \mid x\right. \text { begins and ends with } \\
& 0\}
\end{aligned}
$$

Let L_{1} and L_{2} be languages over an alphabet Σ. The concatenation of L_{1} and L_{2}, denoted by $L_{l} \cdot L_{2}$, is $\left\{w_{1} \cdot w_{2} \mid w_{1}\right.$ is in L_{1} and w_{2} is in $\left.L_{2}\right\}$.

Example

$\left\{x \in\{0,1\}^{*} \mid x\right.$ begins with 0$\} \cdot\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ begins and ends with 0 and length $(x) \geq 2\}$
$\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\} \cdot\left\{x \in\{0,1\}^{*} \mid x\right.$ begins with 0$\}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ has 00 as a substring $\}$

Let L be a language over an alphabet Σ.
The reversal of L, denoted by L^{r}, is $\left\{w^{r} \mid w\right.$ is in $L\}$.
Example
$\left\{x \in\{0,1\}^{*} \mid x \text { begins with } 0\right\}^{r}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\}$
$\left\{x \in\{0,1\}^{*} \mid x \text { has } 00 \text { as a substring }\right\}^{r}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ has 00 as a substring $\}$

Let L be a language over an alphabet Σ.
The Kleene's closure of L, denoted by L^{*}, is $\{x \mid$ for an integer $n \geq 0 x=x_{1} x_{2} \ldots x_{n}$ and $x_{1}, x_{2}, \ldots, x_{n}$ are in $L\}$.
That is, $L^{*}=\cup_{i=0}^{\infty} L^{i}$
Example: Let $\Sigma=\{0,1\}$ and

$$
\begin{gathered}
L_{e}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega \text { is even }\right\} \\
L_{e}^{*}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1^{\prime \prime} \text { s in } \omega \text { is even }\right\} \\
\left(\bar{L}_{e}\right)^{*}=\left\{\omega \in \Sigma^{*} \mid \text { the number of 1's in } \omega \text { is odd }\right\}^{*} \\
=\left\{\omega \in \Sigma^{*} \mid \text { the number of 1's in } \omega>0\right\}
\end{gathered}
$$

Let L be a language over an alphabet Σ.
The closure of L, denoted by L^{+}, is $\{x \mid$ for an integer $n \geq 1, x=x_{1} x_{2} \ldots x_{n}$ and x_{1}, x_{2}, \ldots, x_{n} are in $\left.L\right\}$
That is, $L^{+}=\cup_{i=1}^{\infty} L^{i}$
Example:
Let $\Sigma=\{0,1\}$ be the alphabet.

$$
L_{e}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega \text { is even }\right\}
$$

$$
L_{e}^{+}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega \text { is even }\right\}
$$

$$
=L_{e}^{*}
$$

$$
L^{+}=L^{*}-\{\varepsilon\} ?
$$

Example:

$L=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is even\}
$L^{+}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1's in ω is
even $\}=L_{e}{ }^{*}$
Why?
$L^{*}=L^{+} \cup\{\varepsilon\} ?$

Problem

Example: What are prime numbers >20 ?
Decision problem
Problem with a YES/NO answer
Example: Given a positive integer n, is n a prime number > 20?

- Language

Example: $\{n \mid n$ is a prime number $>20\}$

$$
=\{23,29,31,37, \ldots\}
$$

A problem is represented by a set of strings of the input whose answer for the corresponding problem is "YES".
a string is in a language $=$ the answer of the corresponding problem for the string is "YES"

Let "Given a positive integer n, is n a prime number > 20?" be the problem P.
If a string represents an integer i in $\{m \mid m$ is a prime number $>20\}$, then the answer for the problem P for n
$=i$ is true.

Common misconception Beware

A class of language

